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Abstract
We show that after long times (24 h), individual circular domains in 50 nm thick [001] epitaxial
films of ferroelectric lead zirconate titanate (PZT) develop facets due to the crystalline
anisotropy, e.g. along [100] directions. This appears to be a creep process (Tybell et al 2002
Phys. Rev. Lett. 89 097601; Paruch et al 2006 J. Appl. Phys. 100 051608) and was first seen in
a nanoarray of 180◦ domains (Ganpule et al 2002 Phys. Rev. B 65 014101). The effect is
independent of polarity and thus rules out any electronic dependence on different work
functions for top and bottom electrodes. The phenomenon is interpreted instead as a mechanical
relaxation due to highly inhomogeneous stress distributions on the nanodisks, assumed to have
stress-free edges.

1. Introduction

The behaviour of ferroelectric domains in nanostructures
can be different from that of semi-infinite thin films or
of bulk specimens [1–11]. However, in all cases the
domain reversals occur via switching processes that are
inhomogeneous, generally initiated at electrode interfaces,
grain boundaries, or other extended defects. Homogeneous
nucleation and/or spinodal decomposition are not important
processes in these materials. If we examine nucleation on the
nanoscale, we find that the process resembles the dynamics of
a soap bubble breaking: fluctuations in +P and −P arise and
become large; they may shrink and disappear; but like the voids
in the surface of a soap bubble, when they reach a critical radius
r0, they grow rapidly. This causes the ferroelectric to switch
(or the soap bubble to break). r0 is typically about 1 nm in a
ferroelectric. There is a second, larger, critical size we shall
call rc, below which the surface tension in the newly formed
domain makes it circular in the plane parallel to the electrode
interface. For domains larger in radius than rc the crystalline
anisotropy dominates the dynamics, and the domain facets
along high-symmetry crystallographic axes. rc is a function
of temperature T and of the concentration of extended defects
capable of pinning domain walls.

In arrays of 180◦ domains of epitaxial PZT films Ganpule
et al [12] observed in time-resolved piezoforce microscopy
(PFM) the onset of clear faceting at times from (2.6 ± 0.2) ×
104 s (i.e., approx. 8 h) to (2.5 ± 0.2) × 105 s (80 h),

depending upon voltages, thickness, etc. Exactly when the
faceting occurs depends strongly upon defect density; however,
the timescale is of order hours or days, not ms or seconds.
Defects pin the walls and produce curved ‘bowed’ walls as
the domains expand; the faceting occurs only when the walls
break free of the pinning sites. Faceting does not result in
stable configurations; re-faceting occurs with time, and each
stage must be regarded as only metastable. An important
point is that [13] the wall velocity decreases rapidly as the
domain radius grows; in fact, the domain wall curvature is a
significant part of the driving force for domain expansion. This
is very important in the physical understanding of the present
experiments, because creep is occurring after the external
driving field E is turned off. Thus, it occurs only because
of the domain wall curvature. Ganpule et al estimate a wall
energy density U/A of 0.12 J m−2 for their PZT domains.

Paruch et al have shown [14, 15] that the dynamics of PZT
domain growth can best be described as creep, with velocity

v(E, T ) = v0 exp{−β(U/kT )[E0/(Eb + E)]μ}. (1)

Here the creep exponent μ is 1.0 for creep in a periodic
potential but μ < 1 for random potentials. We have added
a bias field Eb, due to different top and bottom electrodes,
in addition to the applied field E used in [14, 15]. This
has the important qualitative effect that v is nonzero in zero
applied field (a relaxation velocity). Eb is typically 0.5–1.0 V
across 50–200 nm (10 MV m−1) in PZT with dissimilar top
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Figure 1. (a) Topographic image of the epitaxial lead zirconate titanate (PZT) film used in this work, showing the degree of surface
roughness. Scan size is 10 × 10 μm2. (b) PFM amplitude and (c) PFM phase images of a circular PZT capacitor partially switched by a
voltage pulse of 2.5 V. Scan size is 1.5 × 1.5 μm2.

and bottom electrodes (Pt/Ir top and SrRuO3 bottom, which
have work functions differing by ca 0.6 eV).

Note that the expression in equation (1) is independent
of domain radius r and hence is not a good model for
nanodomains, although it is excellent for thin films of larger
lateral area. In order to modify it for finite-diameter radii, one
would have to include a term corresponding to domain wall
surface tension and a term due to crystalline anisotropy. The
former term will be isotropic and have v proportional to 1/r ;
and the latter will prefer certain axes and vary as some positive
power of r .

A semi-empirical extension of equation (1) is therefore:

v(E, T ) = v0(r0/r) exp{−β(U/kT )[E0/(Eb + E)]μ} (2)

for the isotropic in-plane wall velocity, with the proviso that
the range of validity is for r > L, where L is the Larkin
length [15]; an additional factor of

�v(E, T ) = av0(r/rc)
n (3)

should appear in general for an additional anisotropic
contribution along specific axes (notably [100], [010] or [111]).
n is presumably >1 but unknown (the function is nonlinear
but may indeed be exponential or some other non-power-law
dependence). No published work yet incorporates such a factor
into equation (2) for an anisotropic theory over all space.

2. Experiment

The present study extends earlier results to the case of circular
‘vortex’ domains in PZT. The topography of the epitaxial
film is shown in figure 1(a) which shows the top surface of
a 10 × 10 μm2 surface, with the depth shown as shades of
grey or black. Figures 1(b) and (c) show respectively the
piezoresponse force microscopy (PFM) amplitude and phase
images of a circular 1 μm diameter epitaxial PZT capacitor.
As this capacitor contains only antiparallel 180◦ domains, its
PFM phase image consists of black and white regions only,
while its PFM amplitude image exhibits dark lines on the bright
background representing 180◦ domain walls.

Figure 2 illustrates the faceting that develops on these
initially circular domain patterns after one day at zero field.
The original Bessel-function-like domain pattern [16, 17] is
now roughly hexagonal.

Figure 2. ((a), (b)) PFM images of domain structure in a PZT
capacitor shortly after a 4.5 V pulse of 1 μs duration is applied:
(a) amplitude and (b) phase; ((c), (d)) PFM images of the same
capacitor one day later, showing faceting due to relaxation induced
by crystalline anisotropy: (c) amplitude and (d) phase. Scan size is
1.3 × 1.3 μm2.

3. Theory

The idea that nanoferroelectrics should develop vortex
‘closure’ domains as in magnets has been put forth very
recently theoretically [3–6] and predicted [17] to give
polarization patterns that strongly resemble 2nd order Bessel
functions. These have been confirmed experimentally [16] and
also simulated very accurately with Heisenberg pseudo-spin
models [16]. However, no one has yet extended the problem
to consider relaxation processes or the effects of crystalline
anisotropy. As domains expand which were initially circular,
due in part to surface-tension-like stress at the domain walls,
the forces keeping them circular decrease with increasing
radius and they will eventually become influenced strongly by
crystalline anisotropy.

In vortex systems the problem is difficult [18, 19] because
of the existence of several critical length scales. However, the
length of importance to us is that perpendicular to the direction
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of polarization P . Moreover, at ambient temperatures the creep
process can be classical, due to thermal hopping, and quantum
creep is not required (unlike the case of vortex disclination
lines in superconductors [18, 19]).

Therefore we take a simpler approach here: we want to
estimate the time required in PZT for the onset of faceting in
the relaxing (E = 0) state.

3.1. Model of electrically driven domains

The hypothesis that the relaxation is electrically driven is
initially plausible because the creep velocities are the right
order of magnitude to be explained by the different work
functions of top and bottom electrodes:

First we estimate the faceting time from the data in [14]
on domain size versus poling time at constant field: by
extrapolation of the empirical logarithmic growth data for d =
94 nm epitaxial PZT (within 2× the thickness of our present
specimens) during the writing time from figure 14 of [14],
we find t = 104–105 s, in agreement with our observations,
under the assumption that the pinning and depinning (poling
and depoling) processes take about the same time.

Second, we can try to make an estimate from the
dependence of domain size at a constant time upon the applied
field: since μ = ca 1.0, we can use the graph of wall velocity
versus 1/E from [14] to estimate v in equation (1). Note that
in this equation E and v are not necessarily zero, even with
no applied voltage, because of the bias voltage in the system
(different top and bottom electrodes). For small E (E �
500 kV cm−1), [14] finds v is nearly constant independent of
E , at v = 10−10 m s−1. The reason for this plateau in v(E)

at small E is not stated, but it might in principle arise from
either stress relaxation or bias voltages in the thin films. Thus,
to expand to w = 1 μm, the time required is t = w/v = 104 s,
in good accord with the present experiments.

However, the observed back-switching behaviour is
absolutely symmetric if we reverse the polarization from P
(up) to P (down). This shows that the back-switching cannot
be driven by the different work functions of top and bottom
electrodes.

The analysis above is not useless, however, because the
creep velocity obtained by Tybell et al for a small (but
unspecified) driving force is ca 10−10 m s−1, and hence the
domain walls can move ca 1 μm in 24 h, as observed,
independent of the nature of the driving force.

3.2. Model of inhomogeneous stress driven (strain gradient
driven) domains

It seems more likely to us that the faceting we see in figure 2 is
the result of residual stresses and not due to electrostatics such
as the different work functions for top and bottom electrodes.
Very recently Gruverman and Oates have reported [20] a
finite-element analysis of nanodomain dynamics for doughnut-
shaped vortex domains in (111) PZT. This is a different
configuration than that of the (001) specimens studied in [12].
The mechanism they infer is back-switching under the centres
of the top electrodes, which occurs immediately after the
applied field is stopped. This is because the mechanical stress
is much larger in the 250 nm thick top electrode than in the

Figure 3. A second experiment showing faceting. Unlike the data in
figure 2, which have approximately hexagonal facets, this figure
shows a roughly octagonal polygon.

thin 50 nm deep bottom electrode. The back-switching arises
physically because of shear strains imparted on the disk-shaped
capacitor, and on the assumption that the edges are stress-free.

It is important that the ferroelectric phase transition in
PZT is also ferroelastic. This gives rise to certain spatially
inhomogeneous effects. Salje has pointed out [21] the
following: in case of proper ferroelastic transitions, the elastic
constant Ci j is the order parameter susceptibility with a
lowering of Ci j near the ferroelectric transition temperature
TC [22]. In the more common case of an improper ferroelastic
transition, no significant softening of Ci j occurs near TC except
the dynamical effects described by Carpenter and Salje [23].
All precursor effects described in earlier publications are
uniform throughout the sample. The new feature, as described
in Salje’s paper [21], consists of a heterogeneous precursor.
The softer phase nucleates at the surface of the sample as
a relaxational deformation. The precursor regions decay
exponentially over space [20, 24]. The elastic response of
the relaxation region is different from the bulk values but
will be difficult to observe in a macroscopic sample unless
local indentation or AFM methods are applied [20, 24].
Salje concludes: ‘in samples with large surface fractions,
such as in nanoceramics, these effects should be easily
measurable’. Although Salje concentrates on phenomena near
the phase transition temperature, his analysis shows generally
that there will be soft regions in the centres of thin-film
nanoferroelectrics, even at temperatures far removed from the
Curie temperature. The magnitude of the softening depends
upon the electrode-dielectric misfit strain.

The most important prediction of Salje’s work is that soft
centres will be characteristic of almost all nanostructures, from
martensitic metals to ferroelectric ceramics. Combining that
with the stress model of back-switching from Gruverman and
Oates, we see that a generic description for doughnut-shaped
domains exists. This applies peripherally to nanodomain
faceting as well, because both are viewed as stress relaxation.
Note in figure 2 that the vertical and horizontal axes are the
crystallographic [100] and [010] directions. The fact that these
align with two of the polygon vertices supports the idea that
faceting is due to crystalline anisotropy. However, in figure 3
this alignment is not so close.

These stress analyses [20, 24] do not readily permit
estimates of the times to close ‘doughnut holes’ in domains
or to produce faceting. However, they do show that the key
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parameter is the misfit strain between electrode and epitaxial
film. A check therefore is afforded by varying the electrode
metal. In agreement with this interpretation the choice of metal
for the top electrode is known to have a large effect on back-
switching in PZT [20, 25].

4. Comparison with other faceting studies in
nanoferroelectric films

In addition to the seminal work by Ganpule cited above,
faceting in micro-crystals of ferroelectric materials have been
studied by several other groups: Shur’s group in Ekaterinburg
has extensively studied LiNbO3 and LiTaO3 [26–28]. Their
analyses of faceting—in which they see many regular
polygons—is that it is a highly non-equilibrium process
involving depolarization screening and back-switching.

Related studies have been carried out by Kalinin et al
[29, 30] by Cho et al [31], and by Paruch et al [32].
The work of Kalinin et al on PZT showed that, as in the
present work, the nucleating nanodomains were approximately
circular (oblate spheroids in their studies) but faceted with
growth; unlike the present study or that of Shur et al, the
faceted nanodomains were highly irregular. These authors
conclude that the discontinuous jumps in faceting give rise
to Barkhausen pulses [29] and that the domain wall profiles
are highly dependent upon the film thicknesses [30]. Cho
et al extended the LiNbO3 work to exceptionally small
nanodomains (5.1 nm diameter) [31], and made useful arrays
of these. Paruch et al [14, 32] show that the creep exponent
decreases dramatically from ca 0.6 to ca 0.2 in epitaxial PZT
if it has a-axis inclusions. These seem to be dominant pinning
sites. A full review is given in [32].

Our observed domains in PZT are larger than those in
Paruch’s studies: our typical diameter of ca 500 nm is bigger
than even the largest domains she wrote with 100–1000 s
pulses of 10–12 V. However, her initial studies were done
on films grown on Nb:SrTiO3 electrodes. SrRuO3 is a far
better metal than the doped semiconducting SrTiO3, but this
cannot be the explanation, because her unpublished studies
of PZT on SrRuO3 films [33] provide excellent contrast but
comparable domain sizes to what she has seen before with
the Nb:SrTiO3. We conclude from this comparison that our
50 nm thick epitaxial PZT films (grown at the Max Planck
Institute in Halle) have exceptionally low defect concentrations
and domain wall pinning rates, a conclusion we reached from
other measurements before [16, 34].

Finally, we note that the mechanism of faceting in PZT
is unlikely to be the same as in LiNbO3 (or LiTaO3). PZT is
strongly ferroelastic (stress–strain hysteresis) whereas LiNbO3

cannot be, since its ferroelectric transition does not change
crystal class [35].

As a parenthetical comment, we note that creep and
stress relaxation are traditionally not easily modelled by the
same approximations: creep cannot be described by the
Maxwell model (spring and dashpot in series) which describes
exponential stress relaxation very well, whereas creep is well
described by the Kelvin–Voigt model (spring and dashpot in
parallel) although that model describes relaxation poorly. Thus

it is unlikely that any simple model will describe accurately
both creep [14, 15] and faceting (relaxation) in nanostructures
of PZT.

5. Summary

We report the relaxation of circular vortex domains over a 24 h
period in epitaxial [001] PZT thin films 50 nm thick. We
find that the ‘doughnut’ hole in the centre vanishes and the
circular outer edge forms facets that are usually hexagonal. We
interpret these as the long-time relaxation of circular domains
that are metastable in part due to surface tension at small
times and small (<1 μm) radii but become unstable against
the forces of lattice anisotropy with increasing size. The
main driving force is the electrode-dielectric lattice mismatch.
It has been possible to separate electric effects, such as
top electrode work function, from purely elastic relaxation.
Further experiments on temperature dependences would be
helpful. In addition, changing top electrode metals to vary
separately the electrode work functions (electronic) and lattice
mismatch onto PZT (mechanical) would quantitatively test the
stress driven hypothesis. The idea of surface tension in nano-
domains has also been used very recently by Yacoby et al [36].
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